The subject of breeds intrigues most cattle producers. But for beef cattle production, breeds are only part of a genetic strategy that should include:

- Matching applicable performance or functional levels to environmental, management, and marketing conditions;
- Choosing a breeding system, either continuous (in which replacement females are produced within the herd) or terminal (in which replacements are introduced externally); and
- Selecting genetic types, breeds and individuals within the breeds that are compatible with the performance level needed and breeding system chosen.

Genetic classifications and breeds

Cattle can be divided into two basic classifications, *Bos taurus* and *Bos indicus*. *Bos taurus*, or non-humped, cattle in the United States originated in the British Isles and western continental Europe. *Bos indicus* (also called Zebu), or humped, cattle arose in south central Asia. There are some intermediates containing both *Bos taurus* and *Bos indicus*. Some intermediates created in the United States, particularly in Texas, are commonly referred to as American breeds.

Although it has no strict definition, a breed can be described as animals of common origin with certain distinguishing characteristics passed uniformly from parent to offspring. Breed characteristics result from both natural selection and from that imposed by people. In this publication, specific characteristics or functional levels are based on estimates of breed averages. Individuals vary considerably within breeds.

Some breeds were created by combining established breeds. A "composite" breed is formed from two or more breeds, usually in exact percentages that vary depending on the goals of the breed. Specific provisions are implemented over generations to retain the most hybrid vigor. The term "synthetic" often is used interchangeably with "composite." But here it applies to breeds formed from pools of two or more breeds without regard to parental breed percentages or heterosis retention.

Many new composites and synthetics are being created. Their characteristics are those of the constituent breeds.

Most breeds have registry associations that record ancestry, define and document characteristics, and promote the breed. Currently, more than 75 breeds can be registered in the United States.

Functional traits or characteristics

The major functional traits important in beef production include body size, milking potential, age at puberty, hot climate adaptability, fleshing ability, muscle expression, cutability, and marbling.

Body size is best evaluated as weight at a stated level of condition or body fatness. Weights at all ages tend to be positively related: That is, cattle heavier at birth tend to be heavier throughout life, though there are exceptions. Genetically larger animals usually gain weight faster, and weight and nutritional requirements for body maintenance are closely related. Size is discussed in the Extension publication L-5192, "Body Size and Milking Level for Beef Production." Frame score, an objective measure of skeletal dimension used to estimate current and future body size, is discussed in the Extension publication L-5176, "Frame Score and Weight of Cattle."

An important irregularity in *Bos indicus* occurs in body size relationships. Calves from dams containing *Bos indicus* inheritance are relatively small at birth, usually causing few difficulties in calving. However, calves by *Bos indicus* sires out of *Bos taurus* dams often are relatively large, so calving may be more difficult.

Milking potential is the genetic capability to produce milk. This is not actual volume of milk produced, which also is influenced by the cow’s nutrition and the calf’s growth potential and nursing pressure. To characterize milking potential accurately, evaluate it relative to body size. Higher-milking females need more nutrients for body maintenance and require higher-quality diets, even when not lactating. Again, consult L-5192, "Body Size and Milking Level for Beef Production."

Age at puberty relates to body size, milking potential, and genetic classification. Smaller individuals and higher-milking types usually mature earlier, whereas *Bos indicus* mature relatively late. Higher-milking females, even large ones, often reach puberty and conceive when relatively young. But because they may become thin after beginning lactation, subsequent fertility can suffer. Although *Bos indicus* types reach puberty relatively late, their productive life usually is longer.
Hot climate adaptability is highest in cattle with Bos indicus inheritance, but some Bos taurus are reasonably heat tolerant or tropically adapted. Animals with lighter-colored, short hair coats and dark skin are most adapted. High humidity intensifies effects of heat, especially since hot, humid climates often add the stresses of parasites and low-quality forage. Heat with humidity stresses cattle that fail to shed long, thick hair coats, particularly dark-colored ones. As might be expected, animals tolerant to hot climates are less adapted to cold.

Fleshing ability is the body’s capacity to fatten and retain fat. Fleshing ability tends to drop with increases in genetic body size, maintenance requirements relative to size, milking level, and inherent muscularity. Animals poorly adapted to their environment generally are low in fleshing ability. Bos indicus often flesh easier than other types on low-quality forage and roughage. Easy-fleshing cattle tolerate periods of nutritional energy deficiency more easily and therefore may reproduce more consistently, but they also over fatten more readily in the feedyard unless properly managed.

Muscle expression is inherent muscularity, independent of other body tissues. Muscling is the second most important factor in cutability. Heavy-muscled types often are low in fleshing ability, so reproductive efficiency may be reduced.

Cutability, or percentage of lean, is usually evaluated in slaughter cattle as USDA Yield Grade. Cutability depends on relative amounts of fat (which varies greatly), muscle, and bone (which varies least). When genetic types or breeds are compared for differences in cutability, it is assumed that the breeds have similar nutrition levels. But producers can readily alter inherent cutability differences by varying nutrition to achieve similar degrees of fatness.

Marbling, or intramuscular fat, is the primary factor determining USDA Quality Grade, an indicator of the palatability factors of tenderness, juiciness, and flavor. Marbling increases with age up to physiological maturity and generally is higher in earlier-maturing and higher-milking types. Bos indicus and most heavy-muscled, low-milking types have relatively low marbling. Because marbling relates somewhat to body fatness, especially in comparing breeds or types, there is usually a trade-off between yield grade and quality grade. As one increases, the other declines.

Breed and functional types

Table 1 lists characteristics of the major breeds of cattle in Texas — those most numerous or most familiar in the state — by estimates of purebred breed-wide averages. Appendix A lists other breeds with registry associations. Using genetic classification and levels of functional traits, breeds can be grouped into these functional types:

- **British Beef**: British-originated breeds and combinations used for beef production only.
- **Continental Beef**: Continental European breeds and derivatives developed exclusively for beef production. These are part of what are sometimes called “exotics.”

Dual Purpose: breeds selected for both beef and dairy production in their native areas, mostly continental Europe, and combinations of beef and dairy breeds. Dual Purpose breeds are used only for beef in the United States. They are the other part of “exotics.”

Dairy: originating in western Europe and selected in the United States for dairy purposes only, with beef production as a byproduct.

Bos Indicus: of pure or very high-percentage Bos indicus background and used only for beef production.

American: includes breeds created in the United States from combinations of about one-fourth to one-half tropically adapted inheritance, typically the Bos indicus-derived Brahman, along with British Beef, Continental Beef, or Dual Purpose.

Specialty: includes breeds that cannot be placed logically in any of these groups, often characterized by particular emphasis on certain traits.

Matching functional levels to production criteria

Climate and nutrition are key variables affecting where differing types and breeds can be produced. When cattle are not adapted to climatic conditions, production suffers. In hot, humid climates, cattle benefit from some Bos indicus or other tropically adapted genetics.

Table 2 shows the effects of nutrition on optimum levels of three primary production functions in cow herds. In general, as nutrition declines, the smaller, lower-milking, easier-fleshing types are better adapted and more efficient. This is discussed in detail in L-5192, “Body Size and Milking Level in Beef Cattle.”

Appropriate functional levels can differ, depending on the breeding system implemented. Cattle for general-purpose, continuous systems must contain a blend of important production traits in both sires and dams.

Conversely, specialized sire and dam types are useful in terminal systems. To reduce cowherd nutritional needs, terminal dams can be relatively small, complemented by high-growth sires. Maternal ability is unimportant in terminal sires because their heifers are not kept for replacements. For more discussion on breeding systems, see Extension publication L-5207, “Breeding Systems for Beef Production.”

Using functional types

There is no “best” type or breed for beef production, because of extensive variations in climates, production conditions, and market requirements. Characteristics of functional types should be matched to these three factors. Also, breeds extreme in specific functional traits usually should be combined with complementing types in a synergistic crossbreeding plan.

The various functional types have these general uses:

British Beef are widely applicable, with some limits in tropical and subtropical climates. Unlike most types, British Beef breeds can be straightbred for commercial production. To take advantage of hybrid vigor, cross them...
with other breeds of this type and with all other types. British breeds are suitable for general-purpose production as well as both the dam side and, to a lesser extent, sire side of a terminal cross. These breeds are the foundation of the U.S. beef herd and the basis of comparison for other types in this discussion.

Continental Beef, because of weight-gaining ability and cutability, are most effective as terminal sires, especially on smaller cows containing higher marbling genetics. However, use caution because of potentially heavy birth weights and associated calving problems. If needed, Continental Beef influence increases size, muscling, and leanness in females without elevating milk production. In general, do not straightbreed or cross this type with other large cattle. Breeds in this group vary considerably in adaptability to hot climates.

Dual Purpose can be used as terminal sires similar to Continental Beef. Maternal use is appropriate for the major breeds of this type, when nutrition is adequate, to create females that are larger, more muscular, leaner, and heavier milking. Use the same cautions with the major Dual Purpose breeds as for Continental Beef in birth weight, straightbreeding, and crossing with other large cattle. Because some of the lesser-known breeds of this type are smaller than the major breeds, they are more applicable as general-purpose than terminal sires.

Dairy for beef production are used primarily to create early-maturing, high-milking females without increasing muscle. Dairy influence, particularly the smaller breeds, also should maintain or possibly increase fertility, if body condition is maintained. However, it often is difficult to keep dairy breeds and crosses in good flesh on typical

Table 1. Functional Levels of Major Cattle Breeds in Texas

<table>
<thead>
<tr>
<th>Functional Breed</th>
<th>Body Size</th>
<th>Milking Potential</th>
<th>Age at Puberty</th>
<th>Hot climate Adaptability</th>
<th>Flesching Ability</th>
<th>Muscle Expression</th>
<th>Cutability</th>
<th>Marbling</th>
</tr>
</thead>
<tbody>
<tr>
<td>British Beef</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Angus</td>
<td>M</td>
<td>M</td>
<td>H</td>
<td>H</td>
<td>M</td>
<td>L</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>Hereford</td>
<td>M</td>
<td>L</td>
<td>M</td>
<td>H</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td></td>
</tr>
<tr>
<td>Red Angus</td>
<td>M</td>
<td>M</td>
<td>H</td>
<td>M</td>
<td>M</td>
<td>L</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>Shorthorn</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>L</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>Continental Beef</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Charolais</td>
<td>VH</td>
<td>L</td>
<td>L</td>
<td>M</td>
<td>M</td>
<td>VH</td>
<td>VH</td>
<td>M</td>
</tr>
<tr>
<td>Chianina</td>
<td>VH</td>
<td>L</td>
<td>L</td>
<td>H</td>
<td>L</td>
<td>H</td>
<td>VH</td>
<td>L</td>
</tr>
<tr>
<td>Limousin</td>
<td>M</td>
<td>L</td>
<td>L</td>
<td>M</td>
<td>M</td>
<td>VH</td>
<td>VH</td>
<td>L</td>
</tr>
<tr>
<td>Dual Purpose</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Braunvieh</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>M</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>M</td>
</tr>
<tr>
<td>Gelbvieh</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>M</td>
<td>M</td>
<td>H</td>
<td>H</td>
<td>M</td>
</tr>
<tr>
<td>Maine-Anjou</td>
<td>H</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>H</td>
<td>H</td>
<td>M</td>
<td>M</td>
</tr>
<tr>
<td>Salers</td>
<td>H</td>
<td>M</td>
<td>M</td>
<td>L</td>
<td>M</td>
<td>H</td>
<td>H</td>
<td>M</td>
</tr>
<tr>
<td>Simmental</td>
<td>VH</td>
<td>H</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>H</td>
<td>M</td>
<td>M</td>
</tr>
<tr>
<td>Dairy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Holstein</td>
<td>H</td>
<td>EH</td>
<td>H</td>
<td>M</td>
<td>L</td>
<td>L</td>
<td>M</td>
<td>M</td>
</tr>
<tr>
<td>Jersey</td>
<td>L</td>
<td>VH</td>
<td>VH</td>
<td>H</td>
<td>M</td>
<td>VL</td>
<td>VL</td>
<td>VH</td>
</tr>
<tr>
<td>Bos Indicus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brahman</td>
<td>H</td>
<td>M</td>
<td>VL</td>
<td>EH</td>
<td>H</td>
<td>M</td>
<td>M</td>
<td>L</td>
</tr>
<tr>
<td>American</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beefmaster</td>
<td>H</td>
<td>M</td>
<td>L</td>
<td>VH</td>
<td>H</td>
<td>M</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>Braford</td>
<td>M</td>
<td>M</td>
<td>L</td>
<td>VH</td>
<td>H</td>
<td>M</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>Brangus</td>
<td>H</td>
<td>M</td>
<td>M</td>
<td>VH</td>
<td>H</td>
<td>H</td>
<td>M</td>
<td>L</td>
</tr>
<tr>
<td>Red Brangus</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>VH</td>
<td>H</td>
<td>M</td>
<td>L</td>
<td>M</td>
</tr>
<tr>
<td>Santa Gertrudis</td>
<td>H</td>
<td>M</td>
<td>L</td>
<td>VH</td>
<td>H</td>
<td>M</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>Simbrah</td>
<td>H</td>
<td>H</td>
<td>L</td>
<td>VH</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>L</td>
</tr>
<tr>
<td>Specialty</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Texas Longhorn</td>
<td>L</td>
<td>L</td>
<td>M</td>
<td>H</td>
<td>M</td>
<td>L</td>
<td>L</td>
<td>M</td>
</tr>
</tbody>
</table>

1 Breeds thought to be most numerous or familiar in Texas. Evaluations are estimates of purebred breed-wide averages compiled from research reports, particularly U.S. Meat Animal Research Center, and judgments of Texas A&M Animal Science Department members Ronald Gill, Stephen Hammack, Joe Paschal, James O. Sanders, Todd Thrift, and J. W. Turner. See text for explanation of productive functions, characterized above as: VL=very low, L=low, M=medium, H=high, VH=very high, EH=extremely high. Range exists within these categories, so breeds with the same designation do not necessarily average exactly the same level of trait expression. Also, considerable individual variation exists within breeds.

2 Evaluated as body weight at the same age and body condition.

3 VL=very late, L=late, M=medium, H=early, VH=very early

4 Under similar nutrition. See text for explanation.

5 Horned and Polled.
British Beef
Belted Galloway
British White
BuéLingo
Devon
Galloway
Highland
Murray Grey
Red Poll
Sussex
Welsh Black
White Park

Continental Beef
Belgian Blue
Blonde d'Aquitaine
Chi Angus
M. archigiana
Parthenais
Piedmontese
Romagnola

Dual Purpose
Amerifax
Beef Friesian
Dutch Belted
Milking Devon
Normande

Pinzgauer
RX3
South Devon
Tarentaise

Dairy
Ayrshire
Brown Swiss
Guemsey
Milking Shorthorn

Bos Indicus
Boran
Gir
Indu-Brazil

Nellore
Zebu

American
American
Barzona
Brahma
Brahmosin
Bralers
Braunbray
Charbray
Gelbray
Hotlander
Santa Cruz

Appendix A. Additional Cattle Breeds with Registry Associations

British Beef
Belted Galloway
British White
BuéLingo
Devon
Galloway
Highland
Murray Grey
Red Poll
Sussex
Welsh Black
White Park

Continental Beef
Belgian Blue
Blonde d'Aquitaine
Chi Angus
M. archigiana
Parthenais
Piedmontese
Romagnola

Dual Purpose
Amerifax
Beef Friesian
Dutch Belted
Milking Devon
Normande
Pinzgauer
RX3
South Devon
Tarentaise

Dairy
Ayrshire
Brown Swiss
Guemsey
Milking Shorthorn

Bos Indicus
Boran
Gir
Indu-Brazil
Nellore
Zebu

American
American
Barzona
Brahma
Brahmosin
Bralers
Braunbray
Charbray
Gelbray
Hotlander
Santa Cruz

Speciality
Ankole Watusi
Beefalo
Corriente
Dexter
Geltex
Salon
Senepol
Texon
Tuli
Wagy